Predicting uncertain behavior of press unit in a paper industry using artificial bee colony and fuzzy Lambda-Tau methodology

نویسندگان

  • Harish Garg
  • Monica Rani
  • S. P. Sharma
چکیده

As the industrial systems are growing complex these-days and data related to the system performance are recorded/collected from various resources under various practical constraints. If the collected data are used as such in the analysis, then they have high range of uncertainties occurred in the analysis and hence performance of the system cannot be done up to desired levels. Thus the main objective of the present work is to remove the uncertainties in the data up to a desired degree of accuracy by utilizing the uncertain, vague and limited data. For analysis of this, an artificial bee colony based Lambda–Tau (ABCBLT) methodology has been used in which expression of the reliability parameters are computed by using Lambda–Tau methodology and their membership functions are formulated by solving a nonlinear optimization problem with artificial bee colony (ABC) algorithm. A time varying failure rate has been used in the analysis instead of constant failure rate. A new RAM-Index has been proposed for ranking the systems’ components based on its performance. The technique has been demonstrated through a case study of press unit of a paper industry, situated in Northern part of India, producing 200 tons of paper per day. The results computed by the proposed approach are compared with the Lambda–Tau methodology and concluded that they have a reduced region of prediction in comparison of existing technique region, i.e. uncertainties involved in the analysis are reduced. Thus, it may be a more useful analysis tool to assess the current system conditions and involved uncertainties. © 2012 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach for Analyzing the Behavior of Industrial Systems Using Uncertain Data

In some practical cases, it is not an easy to analyze the behavior of any complex repairable industrial system up to desired degree of accuracy due to vague, imprecise and uncertain data collected from the various resources (historical/present records). If somehow it can be done, then they have a high range of uncertainty. So, in order to reduce this uncertainty, to make a more sound decision f...

متن کامل

Fuzzy RAMAnalysis of the Screening Unit in a Paper Industry by Utilizing Uncertain Data

Reliability, availability, and maintainability (RAM) analysis has helped to identify the critical and sensitive subsystems in the production systems that have a major effect on system performance. But the collected or available data, reflecting the system failure and repair patterns, are vague, uncertain, and imprecise due to various practical constraints. Under these circumstances it is diffic...

متن کامل

Performance analysis of complex repairable industrial systems using PSO and fuzzy confidence interval based methodology.

The main objective of the present paper is to propose a methodology for analyzing the behavior of the complex repairable industrial systems. In real-life situations, it is difficult to find the most optimal design policies for MTBF (mean time between failures), MTTR (mean time to repair) and related costs by utilizing available resources and uncertain data. For this, the availability-cost optim...

متن کامل

Design of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS

This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...

متن کامل

Design of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS

This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013